Photovoltaic Windows for Green Building

Giacomo Mariani, Joshua Shapiro
UCLA Integrated NanoMaterials Laboratory, Prof. Diana Huffaker

Motivation
- Urban High-Rise Construction has little available roof space for conventional solar cells
- Need for aesthetic solar PVs which can be seamlessly integrated into Residential and Commercial architecture

Solution
- Transparent photovoltaic fabricated from gallium-arsenide Nanopillars embedded in a flexible polymer matrix with conducting polymer contacts.
- Projected power densities of 50W/m² for pillar density of 1/μm²
- Transparency inversely proportional to pillar density, with prism-like diffraction.

Current Capability

Pillars Transferred to Transparent Polymer

- **Photoluminescence of Nanopillars in Polymer**
- Nanopillar Sample
- Embedded in Polymer
- Pillars transferred to polymer are
 - Flexible
 - Transparent
 - Exhibit Strong Photo-Response

Hybrid Nanopillar/Polymer PhotoVoltaic

- **Nanopillars Coated with P3HT (semiconducting polymer)**
- **Nanopillar Coated with P3HT and ITO (Indium Tin Oxide)**
- Initial Results for Hybrid Nanopillar PV
 - Low Leakage Currents
 - Fill Factors > 40%
 - Solar Conversion Efficiency 1-2%

Proposed Photovoltaic Window

- Original Nanopillar Sample
- Etch Back Polymer
- Spin Coat Insulating Polymer
- Drop-Cast Conducting Polymer
- Remove From Substrate
- Spin Coat Conducting Polymer

- **Simulation of Window with Transparent PV Overlay**
 - A Gallium Arsenide P-N Junction converts light into electricity
 - Transparent Conducting polymer contacts to extract carriers
 - Potential to reuse gallium-arsenide substrate
 - High carrier mobility in GaAs
 - Low carrier mobility in polymer
 - Average of ~1trillion nanopillars/m²